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1. INTRODUCTION

In [4] propertiesof monotonicity andsymmetry wereestablishedfor positive
solutionsu, vanishingon tile boundary,of elliptic equations,usingthe maximum
principle and the method of moving planes.The method is due to A.D. Alexan-

droff andwasthenusedby J. Serrin [8].
A typical result in [4] is the following:

THEOREM A. Let ~2be a bounded domain in R” with C2 boundarywhich is
convex in the direction and symmetricaboutx

1 = 0. Let u be a positive
solutionof

tsu+fI~u)=0 in ~7

U = 0 on

wheref E C
1. Thenu, = u

1 > 0 for x1 <0 andu issymmetricin x1.

In case &7 is a ball it then follows that u is radially symmetric and u, < 0.

The symmetryis a by productof monotonicityin the x1 direction—provedby

the methodof moving planesas follows. For X real let T~be tile planex1 =

and

~(X)=~xEf~x1 < x}.

Let xX denotethe reflection of x in T~,i.e. x” hasthe samecoordinatesas x
except for 4 = 2l~.— x1 . The monotonicity result which is proved in [4} is

w(x)= u(xX) — u(x) >0 for x E {~(X),X <0).

In the limit we have u(x°)~ u(x) for x E Z(O). Since ~2and the equationare

symmetricin x1 , the oppositeinequality follows, andhencesymmetry.
Symmetry propertiesof solutions in all of R~were also proved in [4] and

[5].

The authors of this paperextendedsomeof tile monotonicity and symmetry

results to semilinear equationsin infinite cylinders. In the processof doing
that they discoveredsomegeneralisationsof results of [4] in boundeddomains.

Theseare the subjectof this paper.So thisshould be regardedasa continuation
of [4]. We no longerassumethat u > 0 andu = 0 on ~2. For conveniencewe

confineourselvesto equationsof the form

(1.1) L~u+f(x,u,Vu)=0.

It is alwaysassumedthat f(u, x, p) is continuousin all variablesand Lipschitz
continuousin (u, p).The argumentsapplyto somemoregeneralelliptic equations.
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In fact after the work was completedMr. Li, Cong Ming discoveredthat they
could be adapted to handle fully nonlinear secondorder elliptic equations.

In particular he can improve one of the main results,Theorem 2.1’ of [4]: he
showsthat theresult holdsevenif the hypothesis(b) is dropped.

Recently Caffarelli, Gidas and Spruck [11] have usedthe methodof moving
planes, rather a measuretheoretic variation, to obtain very strong results on
behaviourof solutions,of certainelliptic equations,nearisolatedsingularpoints.

We will now describesomeof our results(in R” we representx =(x1 ,y),y =

= (x2 x). In section 2 and 3 we assume thatfsatisfiesforx1 <xi.

x1 +x’1 <0,

(1.2) f(x1,y,u,p1,..., p~)~f(x,y,u,-_p1.p2 p~)if p1 ~0.

Here is a symmetry result which will be proved in section 2. We considera
finite cylinder

(1.3) ~Z=S0={(x1,y)ER’
7IxiI<a,yEw}

wherew is a boundeddomainin R’~ with smoothboundary.

THEOREM 1.1. Letube a C2 solutionof(1.1) in ~ andassumethat the boundary
valuesofu are symmetricin x

1 andsatisfy

(1.4) u1(x1,y)~’0 for —a<x1 <0, yEaw.
Assumealso that

u(—a,y)~<u(x1,y)for —a <x1 <a, yEw
(1.5)

and Vx1 in ( — a, a),
3y E w suchthatstrict inequality holds.

Assumethat f satisfies(1.2) and that it is symmetricin (x
1, p1). Thenu is

a symmetricfunctionofx1 andu1 >0 ifx1 <0.

The theoremwill be derived from a monotonicity result, Theorem 2.1, for
solutionsu of (1.1) in

5a satisfying (1.5). Theorem2.2 containsa similar result

underNeumannboundaryconditionson the curvedpart• of aSa.
Here is an examplein which the theoremapplies.In the cylinder ~7let z be

a solution of

L~z+g(z)=0

z = ~ on

where~> 0, ~ issymmetricinx
1,Ø~~ 0 forx1 <O,y E aw,and~ = Oattheends:

x1 = ±a. We assumeg is a C’ nonnegativefunction.Fora(y) a smoothfunction
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of y, the function u = z — a(y), satisfies(1.1) with f = g(u + a(y)) + L~o.

In section 3 we extend the x1 -monotonicity results to general domains~2
with smoothboundarywhich are convex in the x1 direction. Again we replace

the conditionsof [4], that u > U in ~7,u = 0 in ~2, by the condition that on
any segmentin ~2 parallel to the x1 axis, u is greaterthan its valueat the left
end point lying on ~2. In addition, assumingu is less than its value at the right

end point in a~we prove monotonicity(in x1 ) in the full domain ~Z.
Here is a specialcaseof Theorem3.1’:

THEOREM 1.1’: Let &2 be a boundeddomain, with smooth boundary, which

is convexin the x1 direction and symmetricin x1 . In &~let u be a C
3 solution of

~u +f(u) = 0

u=~ ~ acz,

where f is Lipschitz continuous Assumethat ~ is symmetric in x
1 and that

for x1 ~ 0, wherever the normal i to ac~~ = 0, there ~ 0. Assume

also that if(’x1, y) E &2, (xi, y) E ~ then

u~x1,y)>~(x~,y).

Thenu issym~netricin x1 andu1 > Oforx.1 <0.

L. Caffarelli indicatedto us a different and very simple argumentfor proving
x1-monotonicityunder the condition(in placeof(l.2)):f is nondecreasingin x1.
See Theorem3.5 and its corollary. In section4 we modify his argumentto prove

nionotonicity underthe weakercondition

(1.6) f(x,u,p) isnondecreasinginx1 for p1 ~0.

Hereis a simplified form of Theorem4.1 in the cylinder&l = S~.

THEOREM 1.2. Let uE C
2(fl) be a solution of(1.1) with f satisfying(1.6) and

Lipschitzcontinuousin (x
1, u, p). Assumethat u1 ~ 0 on ~2 and that

(1.5)’ u(—a,y)<u~x1,y)< u(a,y) VyEw,—a<x1 <a.

Then u1 > 0 in f2. Furthermoreif U is any solution of (1.1) agreeing with u

on ~f2 andsatisfying(1.5): then ~. = u.

Weconcludethe introductionwith someremarksaboutthe maximum principle

for solutions in a domain f2 of an elliptic inequality (we use summationcon-
vention)
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(1.7) a11(x)u~+b.(x)u +c(x)u~0.

Uniform ellipticity is assumed:

(1.8) a11~1~1>c0I~I
2,c
0>O.

We will constantly refer to results from [4]: the Maximum Principle and its
Corollary as well as Lemma H on pages2 12-3 of [4], andalso to the extended

Hopf boundary lemma at a corner, Lemma S, in [4]. In addition we will use
Lemma A.1 there. In all of theseresults,as statedin [4], it is assumedthat
uEC

2(~)andthat the coefficientsin (1.7) are continuous(for LemmaS further

regularityof the {a~}is required).
For various applicationsit is important to be able to relax thesesmoothness

requirements.In [1] Amick and Fraenkelhaveextended(and used)theseresults
for equationsin divergenceform, with merely boundedmeasurablecoefficients.

For equations(1.7) in nondivergenceform we point out that it is enoughto
supposethat u E W2’1’, p > n, and that the coefficientsin (1.7) belong toL.

Namely, the Maximum Principle and its Corollary, and Lemma H of [4] hold

for such solutions. The proofs of these assertionsproceed as in the classical

cases,with the aid of the usualbarrier functions,but usingthe Bony maximum
principle [3]. Recall its statement(seeP.L. Lions [6] for an extension):

Bony Max. Princ.: Let u E W~’~°p > n, maneighbourhoodof the origin in
R”, and havea local maximum at the origin. Then

lim inf ess
x—’O ‘~ /

where~a
11jis a nonnegativematrix belongingto

Furthermore,Lemma S of [4] holds for C
2(~)solutions of (1.7) in case

a
11 E C

2(.~),and thecoefficientsb
1 andc arein L~.

New ideasare involved in proving the new results.A new ingredient in our

applicationof the methodof moving planesis the useof parabolicinequalities—

and the correspondingmaximum principle. This came as a surprise to us. In
particular we will need an analogue of the corollary on page 213 of [4]. We

state it only in the simplest form. In R’
5 + 1 with coordinates(x, t), x E R’~,

let V be a boundeddomain lying in t < T. In V we considera function w, with
continuousderivativesup to secondorder in x and first order in t, satisfying

a (degenerate)parabolicinequality:

(1.9) (L — ~a~)w =a
11(x, t)w~~+ b1(x, t)w~.+o(x,t)w—13(x,t)w~~0.

Here the a11 are continuousand satisfy (1.8) and the other coefficientsare
all in L~ in addition$> 0.
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PROPOSITION 1.1. Assumethat at everypoint of

J= aVn{t<T}

we have w ~ 0. If V lies in a sufficiently narrow region 0 < a + < e then

w~0in V.

Here e dependsin the constantc
0 in (1.8) and on the L~norms of the coeffi-

cientsb1, c, f3.

The proposition will be proved in the Appendix togetherwith analogues

of LemmasH and S which are statedin section4. Seealso LemmaA. 1.
We wish to expressour thanksto L. Caffarelli for severaluseful remarksand

to Li, Cong Ming for his remarks and simplifications of some of the proofs.

2. MONOTONICITY

In this section we will presentgeneralizationsof one of the basic results,
Theorem 2.1 of [4] (1). The readershouldnotehoweverthat,here,the moving

planeswill movein the direction of increasingx1 (in [4] it was the otherway).

So our conditionswill look a bit differentfrom thosein [4]. As we haveremarked,

we do not assumeu = 0 on Ei&7 and u > 0 in &l. Ratherwe assume,essentially,

that on any open interval in &2 parallelto the x1 axis u,is greaterthan its value

at the left endpoint (i.e. smalle~tx1) on

In this section we considerthe simplest geometry,the finite cylinder fi = Sa

of § 1:

(2.1) S = ~ y) ER~;I xi I <a, yEw).

In [—a, a) x ~i we considera C
2 solution of

(2.2) L\u +f(x, u, Vu) = 0.

We will provemonotonicityof u in for x
1 <0 assuming(1.2):

~forx1 <x~,x~+x~<0, and p1 >0,
(2.3)

(f(x1,y, u,p1,p2 p)<f(x~,y,u, —p1,p2 pa).

Observethat if p1 < 0 then,by Lipschitz continuity, ~ C> 0 suchthat for

xl <xi,xl +x~<0,

(1) A more generalform, for fully nonlinearelliptic equationswas given in Theorem2.1.
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f(x~,y,u,_p1,p2 p)—f(x1,y,u,p1,p2,...,p~)

,y, u, O,p2,.. . ,p,~)—f(x1,y, u, 0,p2 p~)+ Cp1

~Cp1 by(2.3).

It follows that thereis an L~functionjl ~ 0, suchthat forx1 <xi, x1 + x <0,
andall p1,

(2.4) f(x,y,u,_p1,p2 p)—f(x1,y,u,p1,p2,...,p)>_’j3p1.

Here~dependson x1, x , p, etc.

THEOREM 2.1. With u and f asabove,assume

(2.5) u(—a,y)~u(x1,y) for —a <x1 <a,yEw

and, Vx1 in (— a, a), ~ y E w such thatstrict inequality holds.

Inaddition weassumethat for y E ~w, — a <x1 <x~<a

(2.6) u(x,,y)~u(x,y) provided x1 +x <0.

Then,for_a<x,<x~,x1+x <0,yEwwe have

(2.7) u1(x,,y)>0, u(x1,y)<u(x~.y).

Furthermoreif u1 (0, y) = 0 for somey E w then u is a symmetricfunction

ofx1.

REMARK 2.1. We have statedthe theoremin casen > 1, but of courseit holds
also for n = 1 — simply ignore the boundaryconditionson aw. Hereis a simple
examplein casen = I showingthat the condition (2.3)onf cannotbe dropped:

On the interval fZ = (— a, a), a large,the conclusionof Theorem2.1 doesnot
hold for

u = (x + a) e~

It satisfies

ii + 2i~+ u = 0,

and condition (2.3) does not hold. Furthermoreif u is any C
3 function on

a, a] with u(— a) < u(x) < u(a) which is not monotone,it still satisfiesa
differential equationi~+ f(x)= U wherefis in fact — u(x).

Observealso (see (2.5)) that on the interval I x I < a = 3ir/2 the function

(2.8) u = 1 — sin x satisfies

ii + U — I = 0,
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and satisfies u(— a) < u(x) < u(a) for x < a except at x = ±ir/2, and (2.7)
doesnot hold for u. For n = 2 we may takea = 3ir/2, w = (0, ir) and u = 1 —

— sin x sin y, whichsatisfies/2~u+ 2u — 2 = 0. Condition (2.6)holdsas does(2.5)
exceptat x = 7r/2, and (2.7) doesnot hold.

The proof of the Theorem is similar to thoseof Theorems2.1 and 3.1 in
[4] but differs in some essentialdetails. In particular we do not have the ana-
logueof Lemma2.1 of[4].

We will use similar notation: For any X in — a < X ~ 0 let Z(X) denotethe

finite cylinder

~(X)=~(x1,)’)E~Z;—a<x1 <X}.

~‘(X) is the reflection of ~(X) in the plane

T~=~x1=

the reflection of x = (x,, t’) in the plane T~is the point x~’= (2X — x1, y).

Proofof Theorem2.1 : In ~(X) considerthefunctions

(2.9) v(x) = u(xX) = u(2X— x1, y), andw(x) = w~(x)= u(x) — u(x).

Wewill provethat for every X in (— a, 0),

(2.10) w(x)>0 in E(X)

(2.11) —2u1 =a1w<0 on TXnfl.

Theseyield (2.7). We use the method of moving planes;it consistsof two steps:

(I) Initial step:prove (2.10), (2.11) for U <a + X small.
(II) Continuation:provethe inequalitiesfor all X in (— a, 0).

(I) Here we use condition (2.4) to derive a parabolicdifferential inequality

for w in ~(X). Therev satisfies

_L~v=f(xX,u,—v1~V~v).

>f(x, v, v1 , V v) + f3v1

with ~3E L~,j3(x, X)> 0, by (2.4). Hencew satisfies

_~w=f(x?~,v,_u1,V~v)_f(x,u,Vu)

>f(x, u, Vu) — f(x, u, Vu) + !lvl.

Sincef(x, u, p) is Lipschitz continuousin (u, p) it follows that for suitable boun-

ded functionsb., c,

~w + b,.w1 + cw + <0.
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But

a
—w=2u (xX,y)rr_2v (x).
ax 1 1

Thus we obtain a (degenerate)parabolic inequality for w as a function of x
and X:

(2.12) ~w+b.w.+cw—— — w<0.
11 23X

ItholdsinaregionVin(x, A) space:

(2.12’) V={(x
1,y,A);—a<x1 <A<X0,yEw}

Excepton the top part, A = A0, we havew~ 0 on aV. Indeed on theboundary
where = A we havew = 0, and wherex1 = —awe havew(x, X)~Oby (2.5).

For 0 <a + A~small, the width of this region in thex1 directionis small, namely
a + A0. Wemay thereforeapply Proposition1.1 andconcludethat

w ~0 in E(A),

andhence

—2u1 =w1<O on ~

this is true forevery A close to — a. So u1 ~ 0 for x1 closeto — a.
To finish Step(I) we use (2.3) and derivean elliptic inequality for w In ~(A):

As beforewehave

— i~w= ~ftx”, u, — , V,,v) —f(x, u, u1 V~u)

~

+f(x?~,u,_u1,V~u)_f(x,u,u1,V~u)

>f(xX,v,_v1,V~u)_f(xX,u,_u1,V~u)

by (2.3) (we haveshownthat u1 > 0 in ~(A)). Thus

(2.13) I~w+~b.w1+cw<0

for suitableboundedfunctionsb., c.

Note that (2.13) holds in ~(X), for any A in (— a, 0) provided we know
u1 ~‘0in~(A).

Since w ~ 0 in ~(A) for 0 <a + A small,weinferfrom themaximumprinciple

and the Hopf lemmathat (2.10) and(2.1l)hold. In fact we haveproved
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LEMMA 2.1.Assumethat for someAm (—a,O)wehave

(2.14) u1(x)~O,u(x) ~ u(x~’) in ~(A).

Then (2.10),(2.11)hold, i.e.

(2.15) u(x)<u(xX) in ~(A) andu1(A,y)>O for yEw.

Step (I) is finished. Turn to Step(II). Inequalities(2.14) hold for every A in

a maximal interval (— a, p] in (— a, 0]. We will prove that p = 0. Supposethe
contrary,that ~i <0. By Lemma2.1 we have .2.15)for A = p.

Since p is maximal, only two situationsare possible.Case 1. There is a se-

quenceof pointsx’ with u1 (x’) < 0 and ‘~ p. Case 2. There are sequences
~ p, andx~E ~l withx~<A

1, suchthat

(2.16) u(x’) > u((x1)~).

Considerfirst case1. For a suitable subsequencewehavex1 —* x on T~.Because
of (2.15), necessarilyx E af2. We may supposethat the exterior unit normal
to a~zat x is e

2 = (0, 1,0,.. . , 0). From (2.6)wehaveu1 ~ Oatx; by continui-

ty, u1 = 0 at x. Moving from x’ along a segmentin the directione2, in a short
distancewe hit ass,where u1 ~‘ 0. Consequentlyat somepoint on thatsegment
we must haveu12 > 0. Sou12(x) ~‘ 0. The functionw definedin (2.9), for A =

hasin ~(p) a minimum, zero,at the corner pointx. By LemmaS of [4] wehave

(a1 +a2)w<oor ~ +a2)
2w>0 at

i.e. — 2u
1 <0 or — 4u12 > 0 at x. But bothareimpossible.Thus Case1 cannot

occur.

Considercase2. We may supposethat in ~(A
1),w = ~ assumesits minimum,

which is negative,at x1. So Vw = 0 and the Hessianmatrix of spatial second

derivativesof w, {w/k} > 0 there.For a subsequencewe havex~—~ Y E ~(p).
In the limit u(~)> u(~) so we must haveequality.From now on w refersto
w. By continuity, atx,

(2.17) w=0, Vw=0 and wfk ~‘O.

From (2.13) it follows that {wlk} 0 there. By the theoremof the meanthere
is a point z~in the intervaljoining x1 to (xi)Xi whereu

1 (z’) <0. In view of (2.15)

and the fact that Case us impossibleit follows that 7 ~ T~.Thus 7 = (~, Y)

with — a ~ <p. In ~(p), w achievesits minimum,zero,at ~.

If — a = ~ ~ E w thenby LemmaH, w1(7) > 0, contradiction.Se wehave
y E aw and > a or = a. We may supposethat the exteriornormal to aw
at JT is (1, 0, . . . , 0). Thenin the first case,~ > a, LemmaH implies w2(Y)<0,
contradiction.In the secondcase,~ = a, Lemma S implies
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(a1 — a~)
2w(7)>0.

againa contradiction.

We haveproved that p = 0. To completethe proof of Theorem 2.1 we must
prove the last assertion.Supposeu

1 (0, y) = 0 for some j’ E w. For w defined

in (2.9) with A = 0 we have w > 0 in ~(0), and,as before,it satisfiesan ine-
quality of the form (2.13). It follows from the maximum principle that either
w 0 or w > 0. In the latter case,by LemmaH, we would have— 2l1~=w <0

at (0, j’), a contradiction. So w 0, i.e. u is symmetricin x1 Theorem2.1 is

proved.

REMARK 2.2. If we knew that > 0 near = — a then Step(I) in theproof
would be trivial.

As in [4], Theorem2.1 yields immediatelythe

Proofof Theorem1.1:By Theorem2.1 we have >0 forx1 <0 and

u(x)<U(xA) for X=0.

But if we reflect the problem aboutthe planex1 = 0, i.e. replacex1 by — x1
we obtain the sameequation.Thuswe may concludethat

u(x)>u(x’) for A=0.

Hence u is symmetricin x1. .

Next we will prove a nionotonicity result for solutionsof (2.2) in S0 under

Neumannboundaryconditionson aw.

THEOREM 2.2. Assumethe conditionsof Theore,n2.1 but with (2.6) replaced
by

(2~) u(x1, y) = 0 for y E aw.

where v is the exterior unit normal to at (x1, y). Thenfor — a <x1 <x~~
+ x~<0 andy E ~ wehave

(2.18) u1(x1,y)).0

(2.19)

Furthermore if u1 (0, y) = 0 for somey E ~ then u is a symmetricfunction

of x1.

The proof will rely on an extensionof Proposition 1 .1. in the appendix,Pro-
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position A. I

Proof: (a) We proceedas in the proof of Theorem2.1 — with slight variations.

Using (2.4) we first show that (2.10) and (2.11) hold for 0 < A + a small.When
using (2.4) we used Proposition2.1. This was appliedin thenarrow region—.a<
<x1 <A <A0, 1 E w: we had w ~ 0 on its boundary(excepton top) andconclu-

ded that v~’> 0 in ~(A). In the presentsituationwe havew ~ 0 on the left (x1 =

= — a) and right boundariesof ~(X) and = 0 on the remainingboundary
for A < A0. With the aid of PropositionA.l in the appendixwe find w ~ 0 in

E(X) for A closeto — a. As before,using(2.13) we thenfind thatw >0 in ~(X).

(h) Wehave

LEMMA 2.2. L’nder theconditionsof Le,n,na 2.1 we have (2.15) and

(2.20) u1 (A, .y) >0 for j’ E ~.

Proof: As before,(2.20)holds for j’ E w. Supposeu1 (A, y) = 0 for somey E
� a~.We may supposethe exterior normal v there is e2. Applying Lemma S
to w~in ~(X) at (A, y) we infer that

— 4u12 = + 82 )
2w > 0 there.

But sinceu
2 = u~, 0 on a segmentcontaining (A, y) parallel to the x1 axis we

haveu12(A, j~)= 0. Contradiction.

(c) With p as in the proof of Theorem2.1 we wish to show p = 0. Suppose
p < 0. As before, we have the Cases1 and 2. By Lemma 2.2, Case I cannot
occur so we have case 2: x

1 -, 7 E ~ at ~, w = 0, Vw = 0 and{wjk} = 0

for w = w. SoYE 8~(p),and in view of (2.20),—a~7
1<p. If—a <Y~<i~

then 5T E 8w and by LemmaH we find 8~w(~’)<0 — contradiction.If — a = Xj~
and j’ E w we seeagain by Lemma H that w1 (7) > 0 — contradiction. So — a =

= y E aw. Using Lemma S there we obtain again a contradiction. Thus

p =0.
Thelastassertionof Theorem2.1 holdsas before.Theorem2.2 is proved. •

Theorems2.1 and 2.2 have immediateapplicationsto infinite cylinders. Let
Sbe the infmite cylinder (— oo, oo) x w.

COROLLARY 2.1. Let U be a C
2 solution of (2.2) in Swith f satisfyingcondi-

tion (2.3). Assumethat for somenumbersc
0 <c1, andR > 0,
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lim~~_,,,,u(xi,y)<couniformlyforyE~3

(2.21) u1(x1,y)>0 for x1 <—R in S

u(x1,y)~c1 for x1~—RinS.

(a) If everywhere on aswe have u1>~0, then u1 >0 in S.

(b) If everywhereon aswe have u,, = 0 then u1 > 0 in ~

Proof: Simply apply Theorems2.1 and 2.2 and Remark 2.2, Lemma 2.2,

in cylinders{— a <x1 <b}x w for arbitrarily largea and b.
Extensionsand applicationsof this kind of result are presentedin our forth-

coming paper[9]. In thenext sectionwe considernoncylindricaldomains.

3. GENERALSMOOTHDOMAINS

•Here we extendthe monotonicity results to more general domains.In addi-
tion, we presentresults on monotonicity in x1 in the entire domain; seealso
the nextsection.

We will begin with an extensionof Theorem2.1 to generaldomains~2.For

conveniencewe will assume~2 has no comers: ~2is a boundeddomain with

smoothboundaryandconvexin the x1 direction.We suppose

—a = min{x1x EcZ}.

Assumethat

(3.1) ~

This implies that for x E acz, x1 < 0, the unit exterior normal ~ to ~f2 at

x hasv1 <0.
In ~ let u be a C

3 solution of (2.2) wheref satisfiesthe conditionsof Theo-

rem 2.1. In particular

forx
1 <x~~x1+x~<0,

(3.2) f(x1,y, u, p1, p2,.. . ,p~)<f(x~,y, u, —p1, p2 p~)ifp1>0.

Correspondingto (2.5), (2.6)we makethe following assumptions:

(3.3) If(x1,y)Ea~and(x~,y)Ef~,x1<x~thenu(x1,y)<u(x,y)

(3.4) If(x1,y),(x,y)Ea&2,x1 <x~,x1+x <Othen

u(x1, y) < u(x, y).

From conditions(3.3), (3.4) it follows that
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(3.5) u
1 ~‘ 0 on 8fZ fl{x1 <0k.

As beforewe definefor A > — a,

= thereflectionof~(A)in the planeT~={x1 = X}.

THEOREM 3.1. Assume the conditionsabove, i.e., (3.1)-(3.4). Then if (x1, y),
(x~,y)E.Q,x1<x~,x1+x<Owe have

(3.6) u1 (x1, y) >0, u(x1, y) <u(x~~y).

Furthermore if u1 = 0 for some pointson T0 fl ~7then u is a symmetric function

of x1.

Proof: (i) In ~(A) we consider,as before, the functions v(x) = u(x~’) and
w = w~given by (2.9), and we wish to show that for — a <A < 0, inequalities

(2.10) and (2.11) hold. As before,using (3.2) onederives(2.12),andestablishes
(2.10),(2.11) for A close to—a.Thus if (2.10), (2.11) hold for all A in (—a, A0),
then (2.7) holds forx1 <A0,x1 <x~,x1+x

(ii) Nextwe have

LEMMA 3.1.Assumethatfor someAm — a

(3.7) u1(x)>~0,u(x)<u(x
1’)in ~(X).

Then

u
1 (x) >0 for x E T~fl ~2,

(3.8)
u(x)<u(x~’) in ~(X).

Furthermore if (A, y) E ~fl and ~ > — 1/2 there, then in a neighbourhood of

(A, y) in fZ we have

(3.9) u1 >0.

Proof: The proof of (3.8) is similar to that of (2.15) and will be omitted.
Turn to (3.9); at (A, y) we maysupposethe unit normal ~= (~~ 0,. .. , 0).
Since ~ > — 1/2 we see that at (A, y) the two boundingsurfacesof ~(A), acz
and T~,meetat anangleU > ir/3 (0 is the anglein ~(X)).

In ~(A) the function w = w~is positive and satisfies (2.13).At (A,y)it achie-

ves its minimum. Wemay apply LemmaA.1 of [4] andinfer that at (A, y)

(a1 +ba2)w<o or ~ +b32)
2w>0
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for b large, i.e.

U
1 >0 or u1~<Oat (A,y).

If u1 >0 at (A, y) then we are through. Ii u12 <0 at(A, y)thenitis<O
in a neighbourhood in fl. But u1 ~‘ 0 on acz. It follows that u1 > 0 in a neigh-

bourhood of (A, y) in ~l.
Thelemmais proved. .

(iii) As before we have (3.7) for all A in a maximal interval (—a, p] in (—a, 0],

and wewish to prove p = 0. Suppose p < 0. By Lemma 3.1, inequalities (3.8)
hold.

We must treat the same two cases as in the proof of Theorem 2.1. Consider
first Case 1: we have a sequencex’ with ~ p and u1 (x’) <0. We will show

that for e > 0 sufficiently small, and for every A in sameinterval p <A < A0,

the function w~~ 0 in the region

~ ={xE~p—e<x1 <A].

This implies that u1 ~ 0 in — contradictingthe assumptionin case 1.

To show w~(x)~‘ 0 in the region

~ ={(x, A):xE~,p—e<x1 <A,p< A<A0}

in (x, A) space, we will use the parabolic inequality (2.12), which follows, as

before,using (3.2). We have to check that w~~ 0 at every point on 8~except
thoseon A = A0. As in §2 it will then follow with the aid of Proposition 1.1

that w~~ 0 in We will show that

(3.10) w~~ 0 on ~ \ T~.

In order to establish(3.10) we divide the pointson aflex \ T,~, into different

classes.

The set of points K on TM fl ~7 at which ~ —. 1/3 is compact.Thus for

some ~ >0 we seefrom (3.9) that u1 ~ 0 at every point in K~.Here

K :={xE~dist(x,K)<p}.

For0 <e, A — p small,at any point

(x1,y)EJ :={xEafZ\K~12p—e<x1<A],

we have v1 <— 1/4 and u(x, y) > u(x1, y), if (x, y) E fl and x >x1 — by
(3.3). In particular for A—p > 0 but small,

(3.11) w~(x)>0 for xEJ.
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Considerthecompactset

L=(T fl~”i)\K612.

On L we havew~> c1, a small positive constant.Hencefor 0 <A — p small

we also have

(3.11)’ w,>0 on L.

We haveestablishedw~> 0 at all points of ~ \ T~exceptthosein K6 /2~

But for 0< e, A — p small, we seethat ifx EK612 andp—c <x1 <A, then the

interval joining x to x” lies in K6 andso u1 > 0 on it. Hencew~(x)>0. Wehave
thusverified (3.10).Consequentlyw~> 0 in for p <A <A0. This implies
u > 0 in ~2 . Contradiction.

1 e,X,,

Consider now case 2. We have A~~ p, and a sequencex
1 -* ~ E ~(p) with

u(x1) >u((x~), and Vw~
1= 0 at x’. As before,sincecase I is impossible,YE~

andY~<p. Also w~= 0, Vw = 0 at 7. By Lemma H, 8pwM(7) <0, for p the
exterior unit normalat 7-contradiction.

Thus p = 0 and the proof of Theorem 3.1 is completeexcept for the last
assertion.That is provedjust as in Theorem2.1.

THEOREM 3.1’. Assume the conditions of Theorem 3.1 and assume that f2 is

symmetric in x1 and that the boundary values ofu are symmetric in x1. Assume
alsof is symmetricin (x1, p1). .Then u is symmetric in x1.

It is reasonableto ask if one can prove a monotonicity (in x1) result in all
of &2. Here is such a result.Forconveniencewesupposeagainthat8~7is smooth.

THEOREM 3.2. Let ~2be a boundeddomain in R’~with smoothboundaryand
which is convex in the x1 direction.In f2 let u be a C

3 solution of(2.2) where

fsatisfies(3.2)f(x
1,y, u, p1. p~)<f(x,y,u, —p1,p2 p~)ifp1>0

forall (x1, y),(x’1,y) in &2 with x1 <x. Assume that on every intervalin ~2
parallel to the x1-axis, with end points x

0, x0 + te
1 on a~7, t > 0,we have

(3.12) u(x°) < u(x
0 +se

1) < u(x
0 +te

1) 0<s<t

Assume also (A): If ~f~Zcontains a segment parallel to the x1 axis on which u

is constant then v, the unit exterior normal to ~ is also constant on the seg-
ment.(This condition is automaticif n = 2). Assumealso that at any boundary
pointoffZ, where = 0, wehave

(3.12)’ u1 >0.

Then
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(3.13) U
1 > 0 in f2.

From (3~l2)and (3.12), it follows that u1 > 0 everywhereon — Sc> one

might expect (3.13) to follow with the aid of the maximumprinciple. But the

principleis not immediatelyapplicable.

Proof: We supposethat mm x1 and max x1 in fl are — a and0, andwe define
~(A)and its reflection X ‘(A) as above. For A greaterthan but closeto — a we

have ~ ‘(A) C ~, but this will no longer be the caseas we increaseA. In place
of ~(A) we will work with

f~(A)={x E~(A); x~’Ef2}.

In ~2(A)we considerthe function w~(x)of (2.9). From our conditionsit follows
that w = w~~ 0 on acz(A). To prove’thetheoremwe will provethe analogues

of (2.10),(2.1l):for —a<A< 0.

(3.14) W~(x) >0 in ~2(A)

(3.15) w1 <0 on T~flf~.

Theargumentswill besimilarto thoseusedabove.
(i) Just as before we find that (3.14) and (3.15) hold for A close to —a.
(ii) Theanalogueof Lemma3.1 (andprovedin thesameway) is

LEMMA 3.1’. Assumethat for someAin — a <A <0,

(3.16) u1(x)>0, u(x)<u(x?~)in &2(A).

Then

u1(x) >0fOrxET~fl.~Z,

(3.17) u(x)<u(x”) in ~2(A).
Furthermore if (A, y) E ~f2 and I ~i I < 1/2 there, then in a neighbourhood of

(A, y) in ~2wehave

(3.18) u1 >0.

(iii) We have (3.16) for all A in a maximal interval (— a, p] in (— a, 0], and
we wish to provep = 0. As before,supposep <0. By Lemma3.1’, inequalities
(3.17) hold for A = p. As usual we have two casesto exclude.

Case 1: Thereis a sequencex~with ‘~ p and u1 (x) < 0. We will show that
for e > 0, sufficiently small, and for every A in some interval p <A <A0 the
function w~)‘ 0 in the region(which may have infinitely many components):
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&2(e, A) = {x E &2(A); p — e <x1 <A},

This implies that u1 > 0 in ~ ~2(e,A), which containsa neighbourhood
of T fl ~7 so that case1 cannothold.

12

As in the proofof Theorem3.1 we wish to verify that

(3.19) w~> 0 on af2(e, A).

OnTk we havew~= 0. As before we divide the points on ac2(e,A)\ T~into
differentclasses.

The set K of points on T fl ~f2 at which < 1/3, is compact.So for some
~ > 0 we seefrom (3.9) that u1 > 0 at every point in K5. For e, A — p small,

on

J:={xEaS2\K612p—�<x1 <Xand~1<0]

we have <— 1/4. If (x1, y) E J, (x ~, y) E &2, x > x1 then u(x,y)>u(x ,y).

Thus w~(x)> 0 for x E J. Let M be the set of points x E (af�~�,,\) \ K512)
with p — c <x1 <A suchthat xX E ac~.Then v1(xX)> 1/4 andwe find from
(3.12) that

w~(x)>O forxE M.

On the compactset

L = (T126 fl af~(e,x))\K612

we haveW > c~> 0. So for 0 <A — p small we also havew~> 0 on L. Thus

w~> 0 at all points of 8f1(e, A) \ T~except possibly those in K But as
beforewe seethat w~(x)>0 there.So (3.19) is verified andcase 1 is impossible.

Case 2. There is a sequenceA’ ~ p and a sequenceof points x’ E cZ(A’), with

u(x’) >u((x1)~~5. So u(Y) > u(Y
12). As before,since case1 is impossible,it follows

that Y~<p and YE &2(p). Also w(~ = 0. It follows from (3.12) and (3.12)’

that the straight segmenta joining Y and 712 belongs entirely to ac~,and u =

constanton a. Now if n > 2, atY, the boundaryof &2(p) may havea sharpcorner.
So we cannot apply Lemma H. For that reasonwe assumedcondition(A). Be-
causeof that condition, we may apply LemmaH in fl(p) at Y, andconcludethat

<0. We may then proceedas in the proof of Theorem3.1 and we seethat

Case2 is impossible.Thusp = 0 and the proofof Theorem3.2 is complete. •

REMARK 3.1. In thetheorem,if &2 is symmetricin x
1 aboutx1 = a/2 thenHypo-

thesis(A) is automaticallysatisfied.
Can we dropHypothesis(A) in general?
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A monotonicity result in a full cylinder ~2 = S~ may be provedin a similar
way. The detailsare simplerandwe merelystate the result.

THEOREM 3.3. Let u be a C2 solution in ~ of(2.2) where f satisfies(3.2) for
x
1 <x~.Assume

u(—a,y)<u(x1,y)<u(a,y) for —a<x1 <a,yEw,

(3.20) and ‘v’x1 in —a<x1 <a, 3y,y’Ew such that.

u(—a, y)<u(x1,y), u(x1,y’)<u(ä,y’).

Assume also

(3.21) u1(x1,y)>O for yE8w.

Then

(3.22) u1 > 0 in ~2.

Berestyckiand Pacella [2] adaptedthe method of moving planes to derive
symmetryresultsin sector—likedomains.Here toowe mayconsiderothergeome-
tries and derive other forms of Theorem3.2. Onemay usethe method of moving

planesbut not require themto be parallelwhile moving. As an examplewe pre-
sentsucha resultin an angularsector.

In R’
1 let (p. 01, . . . 0n~~be polar coordinates,p > 0, 0~E [0, IT] for 1 <

< ~ <n — 2, ~ E [0, 27r). In R’7 let f2 be a boundeddomain whoseclosure

doesnot touchthe x,~ — axis and which, in polarcoordinates,is a productdomain

wx(0’(0
1 <cx).

Herew is a boundeddomainin R?z_l with smoothboundary,anda <2ir.

THEOREM 3.4. Let u E C
2(~)be a solutionof

u )=0
fl P n—i

with f continuous,andLipschitzcontinuousin (u, Vu). Assume(for convenience)

the analogue of(3.2) (here p = (p
1... . , p,~_1 )).

f(p, 01, 02
0n—1’ U~U~,p

1, . . . ~en~i) <

(3.23) <f(p,01 ...,0~ ~ p1,p2,. ..,—p~_1)

if 0p~_~<O~1,Pn_1>0.

Assumethat for everyfixed a = (p, 01, . . .

0n2~(correspondingto a point
in w),
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u(a,0)<u(u, s)<u(a, a)for 0<s<cx

(3.24) and Vs in 0 <s <a, 3 a, a’ suchthat u(a, 0) <u(a, s)

u(a’, s) <u(a’, a)

Assumealso u > 0 on acz fl { 0 <0 <a}. Then u > 0 in ~.0n—i n—i 0n—i

Theproof is, again,left to the reader.

L. Caffarelli has pointedout to us a much simplerargumentto provemonoto-
nicity in a full cylinder — and evenuniquenessfor solutionssatisfying(roughly)

(3.24).Here is sucha result,andhisargument

THEOREM 3.5. In the cylinder &2 = let u be a C2(f~)fl C1(~)solution of

(2.2) with f continuousand Lipschitz continuousin (u, Vu). Assumethat f

is nondecreasingin x~.Assume

(3.20)’ u(—a,y)<u(x
1,y)<u(a,y) for —a<x1 <a, yEw

andeither

(3.21)’ u is strictly increasing in x1, on

or theNeumanncondition

(3.21)” u =0 for—a<x1 <a,yEaw.

Then (a) u1 > 0 in ~2. (b) 1ff is also Lipschitz in x1 then u1 >0 in ~2.(c)

There is at most one solution with given Dirichiet data, or with Neumanncon-

ditions(3.21)”, satisfyingall theseconditions, i.e. u is unique.

Proof: (a) In the region E(A), for — a < A <a, considerthe function v(x)

= u(x1 + a — A, y), and set w = v(x) — u(x). w satisfies

0=i~w+f(x1 +a—A,y,v,Vv)—f(x,u,Vu)=0

>1�~w+f(x, v, Vv)—f(x, u, Vu)

= L~w+ E L~w + cw

for suitable coefficients-b1, c, having L~’norms boundedby a constantinde-

pendentof A. Also w ~ 0 on a~(A),or in caseof (3.21)”, on part of a~(A),with
w~= 0 on the remainingpart. Weuse the <<sliding domain method>>:For 0 <a +

+ A small we infer that w > 0 in ~(A), i.e. u lies aboveu. Nowincrease A. On
we always havew = w~~ 0 for A <a. So by the maximum principle we

must continueto havew > 0 for every A <a. This implies that u is increasing

inxl.
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(b) Differentiating the equation(2.2) with respectto x1 andapplyingthema-

ximum principle againwe fmd > 0.
(c) If j~is another solution satisfying the sameconditions,the sameargument

shows that v(x) = u(x1 + a — A, y) is greater thanu in ~(A) for 0<a + A small.
IncreasingA as before we find .i~(x)>u(x). Interchangingthe roles of u and~

we find the oppositeinequality.

COROLLARY 3.1. Let u, f satisfy the conditions of Theorem 3.5. Assume in
addition that the boundary values of ~ are odd in x1. Assume also that f is odd

in(x1,u,p2 pa). Thenuis odd inx1.

This follows, from the fact that u = — u(— x1, y) is a solution satisfying
the sameconditions,andso equalsu.

REMARK 3.2. The conditionsin Theorems3.3 and3.5 are slightly different.

Neitherimplies the other.Here is anexampleof anequationwheretheconditions
of Theorem3.3 hold but not thoseof Theorem3.5.On theinterval — I ‘~x~ 1

the function u = x satisfiesthe equationii + min(0,x)z~+ max(O,x)ü
2 — u = 0.

REMARK 3.3. In Theorems3.1, 3~and 3.2 we assumedu E C3(~).Li, Cong
Ming pointed out to usthat with slight modificationstheproofswork if U E C2 ,a

(~)for some a > 0. This is becausein Lemma A.l of [4], the last assertion
holds if u E C”~ in ~2near0 for r + a > IT!0

0. See Lemma A.l in this paper.

The argumentused in the proof of Theorem3.5 yields the following result.

THEOREM 3.6. Let f be as in Theorem3.5 and let u, U E C
3(r’Z) besolutionsof

(2.2)satisfying

(3.25)

for — a <x
1 <a, y E w. Assume also either

(3.26) u(x1,y)<u (x~,y)for—a’~x1<x~<a,y E8w,

or

(3.27) u =u =0 for —a<x1 <a,yE8w.

Then

is’~u in fl.
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4. MONOTONICITY IN THE ~}LOLE DOMAIN AND ANTISYMMETRY

Theorems3.3 and 3.5 concernedmonotonicity in cylinders. Corollary 3.1
appliedthe latter to prove antisymmetry. In this sectionwe will presenta stronger
version of Theorem 3.5 as well as Cor. 3.1.

Consider again the finite cylinder f2 = S
0 = (— a, a) x w, with a > 0; as before

w C R’~
1is a boundeddomainwith smoothboundary.Let u E C2(~)be a solu-

tion of

(4.1) L~u+~ftx,u,Vu)=0in~7

(4.2) u = 0 on

Here 4 is a continuous function on ~ satisfying

(4.3) ~(x
1,y)~Ø(x,y) for x1 ~

The function f(x, y, p) is continuousin all variables,locally Lipschitz in (u, p)

andsatisfies

(4.4) f~x, u, p) is nondecreasingin x1 for p1 > 0.

THEOREM 4.1. Let u be as above and assumeconditions (4.3), (4.4). Assume

also that u satisfies

~(—a,y)~u(x1,y)~~(a,y) for —a<x1 <a,yEw,

(4.5) and Vx1 in (— a, a), By E w such that

0(—a, y)<u(x1,y).

Then u is strictly increasingin x1 in f2. Furthermoreit is unique,i.e., if~ is

anothersolutionof(4.1), (4.2) satisfying(4.5) then~= u.

COROLLARY 4.1. Under the additional assumptionsthat u1 E C
2(&7) and that

~ is locally Lipschitz in (x
1, u, p) wehave thestronger conclusion:u1 > 0 in &2.

COROLLARY 4.2 (ANTISYMMETRY). Assume the conditions of Theorem 4.1

and assumein addition that 0 is odd in x1, on ~&2,and that f(x, u, p) is odd in

(x1, u, p2 j). Then u is odd, i.e. antisynunetricin x1:

u(—x1,y) =—u(x1,y) V(x1,y) in ~7.

COROLLARY 4.3. Let f be in Theorem 4.1 and satisfy, in addition, for constants
A <B,

f(.v,u,0)>O ifu<A,fl’x,u,O)<Oifu>B.
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Suppose u and u E C2(fl) are solutions of (4.1), (4.2) where 0 satisfies (4.3)
and

çb=A on x
1 =—a, cb=B on x1 =a.

Then u .y, i.e. the solution is unique, and u is strictly increasing in x1 in ~2.

Proof: This follows from theTheoremif we can show that

A<u,u<B in ~7.

We will just show u <B; the other inequalitiesare provedin the sameway.

If M = max u > B then inaneighbourhoodof a point where u M we have

liu+f(x, u,p)—f(x, U, 0)>0.

Using the Lipschitzcontinuity off in p we find in that neighbourhood,

with b, E L°’. By the maximum principle,the setof pointswhereu = Mis open.

By continuity it is closed— and so all of fl. Impossible.Next, if u = B at some

point in ~2then in ~ we have

L~(u—B)+f(x,u,p) —f(x,B, 0)>0.

Using Lipschitz continuityin (u, p) we find

E~(u—B)+b,(u—B)1+c(u—B)>0jnf2.

Here the b1 and c are boundedmeasurablefunctions. But u — B ‘~ 0 in &7,
with equality holding at somepoint in ~7.Themaximum principleimplies u ~B.

Impossible.

Evenfor n = 1 theresult seemsnew — evenfor the simpleequation

ii+b(x)ti +flu)=0,

with b nondecreasingin x, and g(u)> 0 for u ~<A,g(u) ~ 0 for u >B. Li, Cong-
Ming has constructed an example with b decreasingfor which thereis nonunique-

ness.

REMARK 4.1. The condition (4.5) cannot be dropped.For example,inR
2,with

w = (0, IT), &Z = (— Ir/2, 7r/2) x (0, ir), the positiveeigenfunctionui=sinycosx
1

of

L~i7+ 2i~= 0 in ~2

ü=0 on ~f1
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is not antisymmetric in x
1. Using this example one may in fact obtain a more

interesting one: a solution u of the same equation which is not antisymmetric

in x1,and with boundaryvalues0 which are strictly increasing(andodd) in x1.

Namely, let v be the solution of

Lw + 2v = 0 in ~

= ~

where ~ is odd and strictly increasingin x1 — it is easily verified that this is

always solvable. Then take u = ü + cv.
The proof of Theorem4.1 which we will present in an extension of that of

Caffarelli’s of Theorem3.5. Wehave another proof of Cor. 4.2 which is somewhat
surprising in that it makes use of the method of moving planesand reflection.

However in the region ~(A), in place of the function w definedin (2.9), one
works with the function i~= u(x) + u(x’). It satisfiesNeumannboundarydata
on x1 = A. One proves that i~ ‘~ 0 in ~(A).

Suppose M and u are solution satisfying all the conditionsof the Theorem.

We will show that in our usual ~(A), for — a <A <a, the(new) function

(4.6) w(x) := u(x +(a — A)e1) —u(x)>0.

If we take ~ = u we infer that u is strictly increasing in x1. If we set A = a we
seethat u > u in ~2. Interchangingthe roles of u and ~ it follows that u = u.
Thus (4.6)yieldsTheorem4.1.

To prove(4.6) we will derivea parabolicinequality for w of the form (2.12).

But then we have need of parabolic analogues of Lemmas H and S. So we pre-

sent forms of thesewhich will suffice for our purposes.We recall from section
1 that V is a boundeddomain in R’~+ 1 lying in t < T.

Hypotheses:

1) Here w is a solution in V(seesection 1) of(l.9):

(4.7) (L — 13a~)w = a~1(x, ~ + b1(x, t)w~.+ c(x, t)w — 13(x, t)w~> 0

where the a,1 are continuousand satisfy (1.8), and the other coefficientsare in

also 13> 0, w is supposedto have continuous second derivatives in the space
variablesx, andcontinuoustime derivativea~win V.

2) VT = V fl {t = r} V~<Tis connected,and VT is connected.Here V~,.

consists of points (x, T) such that the lower open half of some ball with centre
(x, T) is in V. Set

V U V~=

In the following, P denotesa paraboloid
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P={(x, t);t — T+~>Ix —x0 12}, ~>0.

for which theparaboliccap

(4.8) Q=Pfl{t~T}liesinP~

Wealso consider parabolic caps with T replacedby someothervalue.
Here is a parabolic analogue of LemmaH (for 13> 0 see[7], chapt.3, section3).

LEMMA 4.1. (H) Let V. w and Q be as above. Suppose w <0 in Q and equals
zero at a point (x, T) E ~Q fl ap. Then w~,> 0 there, wherev denotes any spatial

outerdirection to thesphere x — x0 2 = ö in theplanet = T.

Usingthis oneeasilyestablishes

LEMMA 4.2. Assumehypotheses1), 2), and that w ~ 0 in V. Suppose w <0
atsomne point (x°, t°) E V. Then w <0 on all of V~

Nextan analogueof LemmaS.

LEMMA 4.3 (s). Assumehypotheses1), 2) with w ~ 0 in Vand w = Oat a point
(Y, T) on a V~. Suppose that near (7, T), aV \ V~consists of two transversally

intersecting C2 hypersurfaces{p = 0] and {o = 0], with p, 0<0 in VandV~p,
V a linearly imidependent at (Y, T). Assumethat at (7, T),

(4.9) a,.pcJ~=0

and assume that there exists a C2 curve ~1oftheform (~(t),t) for T— e < t ~ 1’,
lying in{p = a = 0}suchthat on{p = a = 0}wehave
(4.10) a..pa . >— C(distance toc9)2

/
1X1

Conclusion:For any spatialouterdirection vat (~, T) (i.e. V~p. v, V,~o. v>O)

either

(4.11) >0 or ö~w<Oat(Y, T).

Wealso have

LEMMA 4.4. Assumethe conditionsofLemmna4.3 exceptthat, in placeof(4.9)
wehave

(4.9)’ a.. p ~a > 0 at (x, T).
U X1 Xj

Then
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(4.12) aw(Y, T))’O.

For the convenienceof the reader,proofs of theselemmas will be sketched

in the Appendix. See also Lemma A.l there, a parabolic form of Lemma A.l

of[4].

Proof of Theorem4.1: As indicated earlier, the theoremfollows once(4.6)

is established,i.e.,

(4.6)’ w(x, A) = w(x) = v(x) —~j(x)>0 in ~(A), for — a <A <a.

Here

(4.13) v(x)=u(x+(a—A)e1) in ~(A).

We will prove (4.6)’ by deriving a parabolic differential inequality for w and
thenusingthemaximumprinciple.We have

O =L~w+f(:x1 +a — A,y, v,Vv)—f(x,.~,~)

=L\w +f(x, v,Vv)—f(x,li, VM)

+f(x1 +a~-A,y, v,Vv)—f(x, v,Vv).

By condition(4.4) we seethat

I=f(x1 +a—A,y,v,Vv)—f(x,v,Vv)

satisfiesI > 0, if v~> 0 while, by Lipschitz continuity, I > Cu~for some con-

stantC> 0, ifv1 <0. Thusl>13v1 where13>0isin L~.Hence

0>Liw +f(~, v, Vv)—f(x, U, Vu)+13v1

or

(4.14) O>L~w+1,1w. +cw—13a~w,

by the integral theoremof the mean and the identity v1 = — a~w.This is our

parabolic inequality. It holdsin theregionU in (x, A) space:

U={(x, A);xE.~Z, —a<x1 <A, —a<A<a}

On the <<spatial>> boundaryof U, i.e. the part of the boundarylying in A <a
we haveby (4.3)and(4.5),w > 0. In fact if we set

(4.15) U~=Ufl{X=t}, —a<t<a,

then

(4.16) w~0on aug.
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Note that U~= ~(t) is connectea.

For0 <a + A small we may apply Proposition1.1 and infer that

w(x, A) > 0.

Since U~= ~(A) is connectedit follows from (4.16)and Lemma4.2 thatw(x.,A)

>0 forx E E(A).
In (— a < A <a) thereis a maximal openinterval (— a <A < i) for which

theinequality

(4.17) w(x,A)>O VxEE(A)

holds. We wish to show that p = a. Supposep <a — we will obtain a contradic-
tion. By continuity we have w(x, ji) > 0 for x E ~(p), and as beforewe infer

that

(4.17)’ w(x, p) >0 for x E ~(p).

By definition of p thereis a sequenceA’ \, p and points x~E ~(A’) such that

(4.18) ~(x’) > u(x~ + a — A’, y’) = u(~’).

Herewe haveset x~+ (a — A’)e1 = x’. We may supposethat in ~(A’), w hasits
(negative)minimum at x~.So V~w= 0, {w,k } > 0 there. A suitablesubsequence
x~convergesto apointYin ~(p), with .~‘ —~Y+ (a — p)e1 = ~‘. Hence

(4.19) w(I,p)=O

andso7E ö~(p).At (7, p), V~w = 0, ~wfk}>0.
In (x, A) spaceweset

V= Un {A<p}

Severalcasescanoccurand eachhasto be treated.In the following we usually
write w(x) to representw(x, p).

Case 1. — a <~ < p. We may supposee2 is exterior normal to a&l at Y.

In Vwe may apply Lemma H (i.e. Lemma4.1) and conclude that

(4.20) w2(~p) <0, contradiction.

Case2. — a = Y1, ~E w. Applying Lemma I1 again we see that w1 (7) > 0 —

againa contradiction.
Case3.7= (p, 5~),j7 E w. By Lemma~L~ (~)<0 — contradiction.
Case4. 7 = (— a, ji~),y E aw. This is treatedas in the proof of Theorem2.1.
We know

(4.21) VXw=O,{w/k}>0 atY
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Furthermore,sincein V, w hasa minimum, zero,at (7, p), we have there a~w~ 0.

It follows from (4.14) that {W.k} = 0 there.

In V we now apply Lemma ~ (Lemma4.3). Here near (7; p) the function
p =p(x2 x~),p<O describesw, and a =—x1 —a. Soa~p,a1=0every-

where. We may suppose(1, 0, . . . , 0) is exterior normal to aw at 37. By the
lemma,

(a1 —~2)
2~>0at 7—contradiction.

Case 5. 7 = (p, 37), 37 E aw. Here ~ = (a, 37). Just proceedas in Case4 using

Lemma~ in V at (7, p).
Thus all casesare impossibleand we concludethat p = a — so the Theorem

is proved.

The proof of Theorem 4.1 yields also the following.

THEOREM 4.1’. Let f be as in Theorem4.1. Letu, u E C2(~)be solutionsof

(4.1) satisfying

u(x
1,y)~u(x~,y)forx1~x,yEaw,

u(x1,y)~u(a,y),u(—a,y)~u(x1,y)for—a<x1<a,yEw

and Vx1 in (— a, a), By E w such that

u(—a,y)<u(x1,y)

Then i~~uin &2.

A specialcaseof this is

THEOREM 4.1”. Let u and ~ be positive functions on = (— a, a) belonging
to C

2(~2)nC(~7)and both satisfying

U+f(x,u)=O in f~

U = 0 at ±a.

Here f is continuous in (x, u), Lipschitz continuousin u, andf is symmetricin

x, andnondecreasingin xfor — a <x <0. Then

(i)u anduare symmetricin x andu,u~ >0 on — a <x <0.
(ii) The functionsu, u are identical or one is strictly greater than the other

in a

Proof (i) is provedin [4]; (ii) follows from Theorem4.1’.
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This result does not hold in higher dimensions,for n ~ 3 seeLin, Ni [10].

Let us turn now to noncylindricaldomains.Considera boundeddomain f~
in R~with smoothboundaryand which is convexin thex1 direction. Can one

extend Theorem4.1 to this? Undersomewhatstrongerconditionsonecangive
a very simpleproof. Here is sucha result.

THEOREM 4.2. Let fl be asjust described,andassumethat u E C
2(fZ) fl C(fl)

satisfies(4.1) and (4.2) wit/I f as in Theorem4.1. Assumethat if (x,

ix’, y) E ~SZ,x~<x~,then

(4.22)

and if in addition(x, y) E f~,x <x
1 <x7. then

(4.23) cb(x,y) <u(x, y) <0(x’, y).

Thentheconclusionof Theorem 4.1 holds.

Proof: We may supposethat the longest open interval in f~parallel to e1

has length 2a andx1 = ±a at its right and left endpoints.For — a <A <a let

~(A)=lxES2;x+(a—A)e1 Ea}.

SupposeIL is a solution of (4.1) in ~2satisfyingthe sameconditionsas u.

As beforeit sufficesto show (4.6) for x E E(A). This thenprovesthetheorem.
In the regionin (x, A) space:

U=~(x,A);xE~(A),—a<A<a}

w satisfies the parabolic inequality (4.14). On the spatial boundaryof U, i.e.
the part of the boundaryin A <a, we havew > 0. In fact for — a <A < a by
(4.22),

(4.24) w(x, A)>O if xEaE(A),xandx—(a—A)e1Eafl.

In x-space, on the boundaryofeach componentsof 2(A) there is a point
x with x andx — (a — A)e1 E sf2, otherwise~~(A) would consistentirely of

— impossible.So

(4.25) w~0 for xEa~(A).

For 0 <a + A small, Proposition 1.1 impliesthat

w(x, A)> 0.

Then by (4.25) and Lemma4.2, it follows thatw(x, A) >0 in U for 0 <a + A
small.
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In (— a < A <a) thereis a maximal openinterval (— a <A <p) for which

the inequality (4.17) holds, and we wish to show that p = a. Supposep <a.

By continuity w(x,p)> 0 forx E ~(p), andagainwe concludethat

w(x, p) > 0 for x E ~2(p).

Proceedas before: by definition of p thereis a sequenceA’ ~v p and points
x’ E ~(A’) such that (4.18) holds. And we may supposethat in ~(A’), w has
its (negative)minimumat x’, So V~w= 0, {wjk} > 0 there. A subsequencex’

-+ 7 E ~(p), becauseof (4.22), (4.23) .~“ -+ = 7 + (a — p)e
1. aearly w = 0,

V,w = O,{w/k}>Oat (3Z p). SoYE a~(p).
In virtue of (4.23) and(4.24),

w > 0 on a~(p),contradiction.

So in this case we know p =a andRemark4.2 is proved. U

As before we seethat Corollary 4.1 holds. In additionwe havethe analogue

of Cor. 4.2:antisymmetry.
It is natural to ask if on~can relax condition(4.22). Here is a result in this

direction.

THEOREM 4.3. Let fl be as in Theorem4.2. In place of (4.22), assume for (x, y),
(x’,y)�a~2,x <x~

(4.22)’ Ø(x, y) ~ 0(x~, y)

and if in addition, (x, y) E ~7,x~ <x1 <x~, then strict inequality holds in

(4.22)’, and (4.23) holds. Assume in addition Hypothesis 3): if the segment
joining (xi, y) to (x’, y) lies on aczar~d on it 0 is constant, then the exterior

normal v to a~zis also constanton it. (This automaticallyholds if n = 2). The

conclusionofTheorem4.1 thenholds.

Proof: Proceedas before. Supposep <a . Again we obtain a point 7 E a~(p)
such that at (~p), w = 0, V,~w= 0, {WIk} > 0. Furthermorea~w‘~ 0 at this

point so by (4.14) {w/k} = 0 there.w(x, p) > 0 for x E ~ If 7 belongsto
a smoothpart of a~(p)we have, as before, using Lemmaf1, aw(7, p) <0 —

contradiction. So 7 is such that 7 and7 + (a — X)e1 E ~f2 and 0 hasthe same
value at these points. By conditions (4.22)’ and (4.23) it follows that the segment

joining thesepointsbelongsto aa
But then by Hypothesis3), the exterior normal v to a~zis constanton this

segment; we may suppose v = e2. Becauseof this, we may apply Lemma 4.4
and get a~w(7p) <0 — contradiction. Thusp = a and thetheoremis proved. •
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Supposethe domain S2 is symmetricin x1 aboutx1 = 0, and of course,convex
in the x1 direction,and suppose0 satisfiesthe conditionsin Theorem4.3. Then
Hypothesis3) is automaticallysatisfied.Thus wehave

COR. 4.4. ANTISYMMETRY. Assumethe conditions of Theorem4.3, without,
however, Hypothesis 3). Suppose ~l is symmetricin x1 and that ~ is odd in
x1. Assume fl’x, u, p) is odd in (x1, u, p2 pa). Then u is an tisymmetric

in x1.

Appendix. Proofs of Proposition 1.1, of Lemmas4.1-4.4 et al.

Proposition 1.1 and Lemmas4.1, 4.2 are well known in case(3>0 (seee.g.
Chapter3, Sec. 2 of Protter-Weinberger[71). The proofs for our case j3 > 0
are very similar andwill just be sketched.In particularthe proof of Proposition

1.1 is essentiallythe sameas the corollary on page213 of[4].

Proof of Proposition 1. 1.: Supposeb1 > — b, c ~ c1 with b, C1 > 0, andsup-

posee > 0 so smallthat

c1 exp (4be/c0)<c1 + 2b
2Ic

0.

Recall that a is the ellipticity constantin (1.8).The function

g = ea(_ 0+

2e) — e~’

is positivein V andsatisfies

— Lg = (a
11a

2 + b
1a)e~’ _c(e0+

2~_e~~X~).

Thus choosing a = 2b/c
0 we seethat

— ~ Lg> c0 a
2 — ba + c

1 — c1 e
2~

2b2
= — +c

1 —c1e
2’~, since a=2b/c

0,
Co

>0.

So the function

v = wig

satisfies

/ Lg
— —13a~v>0 in V
g
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where L’ is an elliptic operatorwith no zero order term. BecauseLg/g < 0 in

V we seethat v can attain a positive maximum only on J = av (~{t <T}. So
v ~ 0 andhencew ‘~ 0.

Note that for all (x°,T) belongingto a V \ J there is anopenhalf ball centred
at(x°,T) lying in V.

Proof of Lemma 4.1: By consideringa smaller parabolic cap touching Q

at (~T) we may suppo~ethat w <0 at every point of ~except (x, T). We may
supposex°= 0 and7= (Y~,0,.. . , 0),7~>0. In ~, near(X~T),wewillcon-
struct a C2 function h, positive in Q, h = 0 on the curvedpart of ~Q, h

1 <0
at (7, 7) and satisfying

(L — /3a~)h > 0

in the region ~ = Q fl ~ > Y~/2}. It follows that for e > 0 sufficiently small,

(L—(3a)(w÷eh) >0

in Q, and on the boundaryof ~ we have w + eh ‘~ 0, except the top, t =

Now the cap Q may be chosenas small as we like, sowe find from Proposition

1.1 that w + eh ~ 0 in Q. Sincew + eh = Oat(~T),necessarilya~(w+�h)> 0
there.But a~h<0 there— the result follows.

Now to constructh. Set

h = e (Ix~
2—t)— ~ T)

For a positive, this is positive in P and zero on aP,and V~h~ 0 on a~except

at thebottompoint (x0, T—~). Furthermore

(L — par) h = ec~t_~2) [4a2a
11x,.x1 — 2a ~ a.. — 2ab,.x1 + c—j3a]—

— ce~~
5— T) >0 in Q for a large.

Thelemmais proved.

Proof of Lemma4.2.: We may supposet°= T~It sufficesto show thatw <0

on every polygonal path in VT startingat (x°, 7). We show that w <0 on the
first closed straight segment of this path starting at (x°, 7’). Continuing this

argumentone finds that w <0 on the whole path.
We may supposex0= 0 and thesegmentisS=(x

1,O 0, fl,0~x1 ~<Q•

Considera small quarterball lying in V in the closureof whichw <0:

{(x,t);x~+...+x
2+(T—t)2<e2,t~T,x

1>Q}.

Now stretchthis in the x1 direction,as a quarterellipsoid:
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E ={(x,t);t~T,x1>0,rx~+x~+...+x~+(T—t)
2<e}

by decreasingr from 1. As we keep decreasingr to some r
0, E1 will even-

tually contain the whole segmentS and will still belongto Vif e is sufficiently
small. We claim that for all r, 1 > r> we havew <0onE~— andsow<0
on S. If not there is a first such r such that w <OinE andw=Oat some
point z on the curved boundaryof E. This point is not the bottom point (0,

T — e) and so we can fit a small paraboliccap in E touchingE at the point
z. But by Lemma4.1 Vw ~ 0 at z. Impossiblesincez is a point in V.

ProofofLemma4.3. We will follow theproofof LemmaS of [4] — thereader

shouldhavethatpaperin hand.Wemay assumex
0 = 0, T= 0.

The conditionsof the lemma are invariant underchangesof variable(x, t) -÷

—~ (y(x, t), t). If p
1, a,~ ~ 0 at (0, 0) we may introducenew spatial variables

(p. x2 — x2(t), . . . ,xp1(t) — x~_1(t),a). ThetransformedV, nearthe origin,
consistsof the region, x1, x,~,t <0. The curve now lies on the t axis. Next,

by consideringa slightly smallerregionx1 + ,1~n1 x~,x~+ ~‘ x~,t <0,
here ‘y > 0, we havew < 0 on its closure,near (0, 0),exceptpossibly on the

t axis. Making a secondchangeof variables (x, t) -÷ (y, t), y1 = x1 +
I = 1 and n.y =x0 , 2~a ~ n — 1, we obtain: V = {x1, x,~,t <0] nearthe
origin, and w <0 in V exceptpossibly on the negativet — axis. ~is still a seg-
ment on the nonpositivet-axis. We’re still not throughwith changesof varia-

bles.We wishto have

(A.!) a =a =0 on ‘~for l<a<n.
1~ an

As in [4] this is achievedby a changeof variables:y=x1~y~=x,~,~a =x +
+ Cc,(t)Xi + d~(t)x; seethe computationthere.

So finally we have near the origin: V ={x1, x, t <0], ~‘is the nonpositive
t — axis, ancj(A.1)holds.

Now we follow pages240-242of [4]. There one took c = 0. We will not do

that here;wewrite

L = M + c.

The inequalities expressedin pages 240-242 of [4] will hold for M. There,

two functions

+k ~ x~, ~‘ =x~+k ~ x~,

were introduced, and a region, in x-space, near the origin,
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G=fqS, %,L’<O}.

Now we considertheregion in (x, t) spacenearthe origin:

(A.2) G=~,~ti,t<0}

On pages240,241 of [4] for largek andthen large a, the functions

z(x)=gh, g = e~t~— 1 , Ii = e~\D —

were constructed.In a small region Gai ={— 1/a ~ 0, i~<0] flfl x <~}the
functionz was shownto satisfy

(A.3) z>0, and z=0 on 0=0 and on Ii =0

(A.4) = o, a~z> 0 at 0.

and

e~f ~‘)

(A.5) a2 Mz >c
1a( 101 + I I)~c1 >0.

In verifying (A.4) the properties

(A.6) a1 >C(xi +x~— ~ x~) , C>O

(A.7) la1~I,Ia~~l~ClxI1 <jl<n,

were used. Becauseof (4.10) and (A.1), theseproperties(A.6), (A.7) continue

to holdin the region

G~={(x,t);xEG~5, —ö<t<0}

for ö sufficiently small. Thus (A.3) and (A.5) hold in G~a6~

Considernow in G the function~
= z + tz

11~.

In the region Wwhereit is positive,we have

(L — (3a~)i=Mz + cz + — z112Mz — z~3/2 a~
1z1z1

+ ctz
112 —

> —Mz +cz
2



MONOTONICITY, SYMMETRY AND ANTISYMMETRY OF SOLUTIONS OF SEMILINEAR ETC. 271

sincet <0, hence

>~ a3(J0I+I~l)_c(lzj+IzI~2) by (A.5).

Now mG we havea ,6

z = (e~4’ — l)(e~”~’— 1)

~

sincee — 1 ~ es for 0 <s ~ 1. Hence,with a differentconstantC,

~

>0 in W

for a large.
Now we use the function 2’ as a comparisonfunction in the usual way. On

aw exceptat the origin we havew <0. Hencefor smalle> 0 we have

w + ci ~ 0

on the entire boundaryof W lying in t < T. For a large,W is as narrow as we

like in the x
1 direction. Thus Proposition 1.1 applies and we concludethat

w+e~O in W.

But w + e~= 0 at (0, 0), so a~(w— �2’) > 0 or a~(w+ �2’)~ 0. Sincei satisfies
(A.4):

ai=o, a~~>o,

the desiredresult(4.11) follows.

Lemma 4.4 is a special caseof the following parabolicanalogueof Lemma

1.1 of [4] (with p>O, so > ir/2, andp<2). We take(7, T) = (0, 0).

LEMMA A.!. Let wand V be as in Lemma4.4 with a11 EC(V~l.In place of (4.9/
assume that at(0, 0)

~ a~p1a. = p~J~ a.1p1p. V ~ a11a1a1

for someconstantp. clearly—1 < p <1. Set O~=(arccos)(— p). Suppose p>

> ~ Let C be a closed cone in {t = 0) with vertexat (0, 0) and such that
for some e > 0, C fl {O <~x <�) lies in V0. Then there is a positive constant

ö and a neighbourhoodin C of 0 in which
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(A.8) w+oIxIP~O.

In particular, if p > 0 we may take p > 2, and it follows that if w E C’ (V)
and V w(0, 0) = 0 then on any direction s from (0, 0) entering l7~ transversally

to the boundary, the secondspatial derivativeson w cannot be boundednear
tile origin. On the other hand if p <0, and w EC~”10°l,a for a> ir/0

0 —

then we may take p < [lr/Oc,]+ a and conclude that at least one of the derivatives

/
w, 1=1,... ,l—

\as LU0

is negative at (0, 0).

Proofs: We follow the proof of Lemma A.! in [4]. As beforewe maysuppose

w < 0 except possibly on {p = a = 0). Proceeding as in [4] we may arrange
that nearthe origin V hasthe form

V= {(x, t);x~>0, x1 >x,, cot O~,t<0}.

Choosek=p00/ir> 1.
Following [4] wealso make

a11 =a~~=1 at (0,0).

We havea1,, = 0 there.With ~ .= x1 + ix,,, in [41 we constructedthe functions

of x:

V =In2~~1TTho)

z=v’c.

Near theorigin in V. z satisfies

Lz>c, I~I1~2,c1 >0, IzI<CI~IP.

Nearthe origin, in theregionW whereit is positive,considerthefunction

2’ = z + tz

with 1 > Q> 0, Q> 1 — 2/p. (For the caseof Lemma4.4 wherep >0 wemay
takep<2 and Q = 0). Wehave

(L — (3a~)tz’= tQz
2 ~Lz + t~(Q — l)aqz

1z1 + ctz~—

>tQz~
1Lz —Cl ~I~’

sincet(Q — 1)> 0. Hencein W,
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(L —13a~)2>(1+ t9.z~1)Lz — C~~

>(! —2)Lz—CjflP~

>(1 —Q)c~ ~P—2 — c~~

>0

sincep—2<p~.
Forsmall positive e wehave

L(w+e2’)>0 in W

and (w + �1) < 0 on the boundaryof W lying in t < 0. By Proposition1.1 it
follows (W is narrow)that

w+c~0 in W.

On t = 0 we havetherefore

w ~ —ez

= — e(Im ~.ir/O~,)k

Thuson any rayx = — rv, T >0, on t = 0 we have(A.8):

w~<_ec
1IxjP.

We concludewith a result usedin the proofof Theorem1.3.

PROPOSITION A.!. AssumeHypotheses1) and2) ofSection4. Set

J= aVn{t<T}.

Supposethat on a set A in J, describedlocally by p = 0 with p E C
2, V,p ~ 0

on A, thefunction w satisfies

(A.9) aw~o

where ~(x) is a smooth spatial unit vector pointing outside of V, with 0.
Assumethat J \ A is nonemptyand that on it, w ~ 0. If V lies in a sufficiently

narrow band ~:O<a+x
1<e,thenw~O in V.

Proof: Following the proof of Proposition 1.1 given at the beginningof this
sectionwe constructedg(x1)> 0 in Vwith Lg <0. Then

V = wig

satisfiedan inequality of the form (4.7), with new c < 0 in V. Since V1 = 0

we see that v continuesto satisfy a~u~ 0 on A and v ~ 0 on J \ A. Thus it
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suffices to provethe propositionin casec <0 in V, which we henceforthassume.
We will continueto refer to the solution as w (ratherthan V).

Suppose

max w = K> 0.
V

Set W = w — K, so max W= 0. W satisfies

(L_13a~)w>_cK>oin V.

It follows that W can achieveits maximum in V only on J. So W <0 in V
and W necessarilyachievesits maximumat a point onA, sinceon J\ A, W <— K.
But by Lemma ~(Lemrna 4.1) a,~w>0 there.Contradiction.

REMARK A.!. It is clear that PropositionA.l holds in the elliptic case,i.e. no
t present.We may notdrop the condition = 0.

Considerthe simpleexamplein —6 <x1 <6,0 <x2 <zr:

w= cos sin x2

satisfiesI~w+ 2w = 0, vanisheson x2 = 0 andx2 = ir while on the lateralboun-

dariesx1 = ±6 (6 arbitrarysmall)

a,~w<0

wherev representsthe exteriori~ormal.
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